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Cardiac imaging frequently will
complement each other to come
up with a correct diagnosis and
help facilitate a treatment plan.
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Figure 2 Automated technique for left-heart 3D chamber quantification. Following initial fully-automated
detection of left ventricular and left atrial endocardial surfaces (left), the software allows the user to perform
manual corrections of the endocardial boundaries when needed (centre), resulting in final 3D casts of the
cardiac chambers. The optional correction are performed in anatomically correct non-foreshortened 2D planes
showing focused long-axis views of the left ventricle (top) and left atrium (bottom), both automatically
extracted from the 3D dataset.
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Figure 1 Different left ventricular shapes that the automated software was trained to recognize. In
addition to normal ventricles, the training set included a number of common abnormal/asymmetrical
ventricular shapes. (Note that the program displays RV and RA casts but no volume values are provided

because they have not been validated).
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Figure 3 Inter- and intra-technique comparisons for left ventricular end-diastolic volume.
Correlation and Bland-Altman analysis for the automated measurements by the sites without and
with contour correction against the conventional manual technique by the Core Lab (A and B,
respectively), as well as against the corresponding automated technique by the Core Lab (C and D,
respectively).
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Figure 3. Dual crop 3D volume-rendered atrial (left) and ventricular (right) views of normal

mitral valve.

Papadopoulos K
et al. Initial
Experience with
the 4D Mini-TEE
Probe in the
Adult
Population. J.
Clin. Med. 2024,
13, 6450.

Figure 4. (A) A 4D demonstration of a true—bicuspid aortic valve (red arrow), (B) Biplane 2D
demonstration of a true—bicuspid aortic valve (red arrow), (C) Chronic dissection of descending
aorta (red arrow showing the wall of the true lumen), (D) 3D volume-rendered color Doppler image

showing the true (right arrow) and the false lumen (left arrow).



Figure 5. Biplane images of tending of the atrial septum during trans—septal puncture for atrial

fibrillation cryo—ablation.

Papadopoulos K et al.
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4D Mini-TEE Probe in the
Adult Population. J. Clin.
Med. 2024, 13, 6450.

Figure 6. Azimuth level (top left), elevation level (bottom left), and 3D volume-rendered image

(right) of an SLO catheter for the guidance of cryo-ablation procedure.
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Figure 1.Two patient-specific static mitral valve models: normal patient (A)
and organic mitral regurgitation patient (B), both at midsystole. Color
scheme: Mitral annulus in gold, anterior leaflet in green, and posterior
leaflet in blue.
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Computer Analysis of Three-Dimensional Echocardiography, Volume: 9, Issue: 1, DOI: .
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Sagit Ben Zekry. Circulation: Cardiovascular Imaging. Patient-Specific Quantitation of Mitral
Valve Strain by Computer Analysis of Three-Dimensional Echocardiography, Volume: 9, Issue: .
1, DOI: (10.1161/CIRCIMAGING.115.003254) © 2015 American Heart A

Figure 3.Patient-specific mitral leaflets strain intensities displayed
at midsystole for a typical normal mitral valve (A) and for a typical
organic valve with mitral regurgitation valve (B). The strain
intensities color code range from dark orange for high strain to dark
blue for low strain.



0.3

m Anterior Leaflet
*p<0.05 vs Normals _
1<p<0.05 vs Anterior Leaflet ® Posterior Leaflet
0.5 m Total MV
*
0.02 I T
5
=
<
> 0.15
-
‘s
&
N
0.1
0.05 -
0.

Normal MV Organic MV

Sagit Ben Zekry. Circulation: Cardiovascular Imaging. Patient-Specific Quantitation of Mitral
Valve Strain by Computer Analysis of Three-Dimensional Echocardiography, Volume: 9, Issue: .
1, DOI: (10.1161/CIRCIMAGING.115.003254) © 2015 American Heart A
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Figure 6.Mean strain percentile curves and respective 95% confidence limits in
anterior and posterior leaflets of normal mitral valves (MVs) and organic mitral
regurgitation. Strain values are higher in organic mitral regurgitation (MR) than in

normal valves.18
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From: Cardiac Amyloidosis Due to Transthyretin Protein: A Review
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Pathobiology of ATTR Amyloidosis and Cardiac ManifestationsCirculating TTR protein is synthesized by the liver as a ho
that dissociates or is proteolytically cleaved into intermediates that misfold and ultimately organize into amyloid fibrils.
then deposit in the heart, resulting in arrhythmia, conduction disease often requiring placement, and heart failure.
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Figure 6. Multimodality imaging of cardiac amyloidosis. A, 2D echocardiographic images demonstrating severe concentric LVH (Left and Center) and
reduced circumferential strain involving only the base of the LV (images courtesy of Dr Frederick Ruberg). B, Representative transaxial MRl images
representing the assumed progression of amyloid deposition in the heart over time. The earliest stages of amyloid infiltration demonstrate an
expansion of the extracellular volume (ECV), quantified by T1 mapping, without obvious late gadolinium enhancement (LGE). With continued amyloid
deposition, there is an increase in ECV and the appearance of subendocardial LGE (arrows). In the advanced stages of the disease, there is further
increase in ECV and a progression to transmural LGE. Images are modified from Fontana et al71 with permission of the publisher. C, Molecular
imaging of cardiac amyloid deposits using 99mTc-pyrophosphate (PYP) SPECT, and 18F-florbetapir PET imaging. The PYP images demonstrate
intense myocardial uptake primarily in transthyretin (TTR) amyloidosis, but not in nonamyloid LVH. Light chain cardiac amyloidosis (AL)
generally shows no or very mild tracer uptake on bone scintigraphy. 18F-Florbetapir uptake is typically present in both forms of amyloidosis,
but quantitatively higher in AL than TTR. No uptake is seen in nonamyloid LVH. LVH indicates left ventricular hypertrophy; and SPECT, single-

photon emission computed tomography.
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Figure 6.18F-fluorodeoxyglucose positron emission tomography (PET)/computed
tomography scan demonstrating aortic root abscess (arrow) and tracking of
infection along basal anterior interventricular septum on (A) standard PET and

(B) time of flight imaging.

Tom Kai Ming Wang. Circulation: Cardiovascular Imaging. Diagnosis of Infective Endocarditis by Subtype
Using 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography, Volume: 13, Issue: 6,

DOI: (10.1161/CIRCIMAGING.120.010600) © 2020 American Heart A
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Figure 2. Forrest plots of pooled data for 18F-fluorodeoxyglucose positron emission
tomography/computed tomography to detect all infective endocarditis. A, pooled sensitivi
and; B, pooled specificity.

Tom Kai Ming Wang. Circulation: Cardiovascular Imaging. Diagnosis of Infective Endocarditis by
Subtype Using 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed .
Tomography, Volume: 13, Issue: 6, DOI: (10.1161/CIRCIMAGING.120.010600) © 2020 American Heart A



Figure 2.Targeted PET-CT imaging of aortic valve disease. A, Contrast-enhanced computed tomographic (CT)
multiplanar reformatted views of the aortic valve and aortic root, with fused targeted images of calcium metabolism
obtained with sodium fluoride (NaF) positron emission tomography (PET). B, Increased NaF uptake (arrows), reflecting
active calcium deposition, despite no evidence of macroscopic calcifications on CT (images courtesy of Dr Marc Dweck,
University of Edinburgh, England). LA indicates left atrium.

Marcelo F. Di Carli. Circulation. The Future of Cardiovascular
Imaging, Volume: 133, Issue: 25, Pages: 2640-2661, DOI:
(10.1161/CIRCULATIONAHA.116.023511) © 2016 American Heart A



Marc R. Dweck. Circulation: Cardiovascular Imaging. 18F-Sodium Fluoride Uptake Is a Marker
of Active Calcification and Disease Progression in Patients With Aortic Stenosis, Volume: 7, .
Issue: 2, Pages: 371-378, DOI: (10.1161/CIRCIMAGING.113.001508) © 2014 American Heart A
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Figure 3.Change in aortic valve computed tomography (CT) calcium score and 18F-sodium fluoride (NaF) positron emission
tomography (PET) activity after 1 year. A and B, Coaxial short axis views of the aortic valve from 2 patients with mild aortic
stenosis (top and bottom). On baseline CT scans (left) established regions of macrocalcification appear white. Baseline fused
18F-NaF PET and CT scans (middle) show intense 18F-NaF uptake (red, yellow regions) both overlying and adjacent to
existing calcium deposits on the CT. One-year follow-up CT scans (right) demonstrate increased calcium accumulation in
much the same distribution as the baseline PET activity. C-E, Predictors of progression in aortic valve calcium score. An
excellent correlation was observed between baseline 18F-NaF activity in the aortic valve and the subsequent change in
calcium score at 1 year r=0.66, P<0.01 (A). This matched the current gold standard predictor of disease progression the
baseline calcium score r=0.58, P=0.01 (B). By contrast, there was a poor correlation with 18F-fluorodeoxyglucose (FDG)
activity in the valve r=-0.11, P=0.66 (C).



Pretest Probabilities of Obstructive CAD in Symptomatic Patients
(A) according to age, sex, and symptoms;
(B) according to age, sex, symptoms, and CAC

Chest Pain

A Pretest probability based on age,
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B Pretest probability based on age,
sex, symptoms, and CAC score*
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Evaluation and Diagnosis of Chest Pain: A Report of the American College of . -
Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines, © 2021 by the A_mer'can Heart_Assomatlo
Volume: 144, Issue: 22, Pages: e368-e454, DOI: (10.1161/CIR.0000000000001029) College of Cardiology Foundation.
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CTCA as one-stop-shop for chest pain investigation:
Positioning FFRct in clinical care and maximizing the yield of the test prediction and prevention management.
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Conventional CT

Photon counting CT
. > - s )

Figure 10: Images from conventional CT (left) and photon-counting CT (right) for cardiac evaluation. (A, B) CT scans show that septal branches (arrowheads) are better depicted o
with photon-counting CT (B) than with conventional CT (A). (C, D) Curved planar reconstructions show that calcifications (inside the box) are more differentiable from the lumen o
compared with conventional CT scans (C). (E, F) CT scans show that a stent (black arrowhead) and an outside calcification (white arrowhead) with focal disruption of the struts
counting CT (F) than with conventional CT (E). (G, H) CT scans show that mitral leaflets (white arrowheads) and calcification in a left atrial diverticulum (black arrowhead) are
CT (H) than with conventional CT (G). (Adapted, with permission, from reference 68.)
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Figure 4: (A) Schematic shows a typical CT perfusion protocol involving acquisition of a noncontrast scan, followed by CT perfusion after pharmacolo
followed by coronary CT. (B-D) Images in a 75-year-old man with hypertension and dyslipidemia with recent-onset atypical chest pain and abnorm
anterolateral leads at electrocardiography. (B) Cardiac CT scan shows a large mixed plague (arrow) in an ostial obtuse marginal branch causing
perfusion map shows reduced myocardial blood flow in anterior and anterolateral segments (arrow) (red indicates normal and green indicates
flow). (D) Invasive coronary angiogram shows confirmation of hemodynamically significant stenosis in the ostial obtuse marginal branch (thi
downstream low invasive fractional flow reserve (FFR, thin arrow; FFR = 0.72). (Adapted, under a CC BY license, from reference 77.)

Dodd JD. Published Online: March 28, 2023
https://doi.org/10.1148/radiol.222827



https://doi.org/10.1148/radiol.222827

Figure 6: Cardiac CT images for planning transcatheter mitral valve replacement. Top: Images show the multipoint segmentation arc (red line) of the
annulus. Annulus size (area, septolateral [SL], and intercommissural [IC] distance) is used to determine eligibility for, and sizing of, the transcathe
replacement. Middle: Images show a simulated virtual transcatheter mitral valve replacement (in this example, a Tendyne [Abbott Vascular] devi
which can be manually adjusted for size and placed across the mitral annulus (red line). Bottom: Images show the center line technique draw,
left ventricular outflow tract (LVOT; orange line). A cross-sectional area (curved dotted orange line) across the narrowest point of the LVOT
this case). (Reprinted, under a CC BY license, from reference 33.)
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Use of Car c Imaging Along the Spectrum of Cancer Treatment
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Anticancer Therapy
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Figure 2. Suggested algorithm for monitoring left ventricular function before, during, and after cancer therapy for function monitoring.
CT indicates computed tomography; LVEF, left ventricular ejection fraction; MRI, magnetic resonance imaging; PET, positron emissio
tomography; and Tx, treatment. Risk factors include (but are not limited to) age >50 years, hypertension, diabetes, cardiac
arrhythmia, and prior heart failure. *Additional imaging during treatment should be tailored to the patient’s cardiotoxic risk pr

and treatment. All patients initiating anthracycline and HER2 therapies should have a baseline LVEF assessment as part of
stratification.
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CENTRAL ILLUSTRATION: Typical Cardiovascular Effects of Classes of
Cancer Therapy With Suggested Cardiovascular Magnetic Resonance Imag-
ing Protocols
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Figure 4.Multimodality imaging in early detection of cardiac toxicity from cancer therapy. A, Black blood short-axis CMR image showing
elevated T2 signal consistent with myocardial inflammation in several segments of the LV in a patient who started anthracycline-based
chemotherapy several days before and presented with palpitations and a minimally elevated cardiac troponin. B and C, Contrast CMR
short-axis images from a healthy control (B) and a patient who had anthracycline therapy for sarcoma 6 years before imaging (C)
demonstrating no evidence of LGE. However, the extracellular volume from T1 measurements demonstrate a higher extracellular
volume of 0.35 in the anthracycline-treated patient in comparison with a volume of 0.26 in the healthy control. (Images in A through E
are courtesy of Dr Tomas Neilan, Massachusetts General Hospital, Boston, MA.) F and G, 2D echocardiographic images of a patient with
breast cancer obtained before and after chemotherapy. There was normal LVEF prechemotherapy and 12 months after chemotherapy.
Global longitudinal strain was normal at baseline but reduced 3 months after chemotherapy (images courtesy of Dr Thomas Marwick)

Marcelo F. Di Carli. Circulation. The Future of Cardiovascular Imaging, Volume: 133, Issue: 25,

Pages: 2640-2661, DOI: (10.1161/CIRCULATIONAHA.116.023511) © 2016 American Heart Association, Inc.



4 ) U f k50
A 72-year-old female on therapy for diffuse large B-cell lymphoma. Diastolic (a) and systolic (b) short-axis bSSFP images with epicardial (green) and
endocardial (red) tracings. LVEF was decreased to 35%. (c) Short-axis native T1 map color image shows elevated T1 relaxation times of 1110 msec i
the anterior wall. Endocardial peak velocity vectors are shown in LV relaxation (d) and contraction (e) phases as yellow arrows. (f) Graphic
representation of global strain throughout the cardiac cycle: endocardial global circumferential strain (yellow line), myocardial global circu
strain (purple line), and global radial strain (light blue line). Myocardial global circumferential strain was -9.0 and global radial strain was 3
are abnormally decreased based on Ref. . (g) Short-axis postgadolinium phase sensitive inversion recovery image shows subtle mid-myoc
gadolinium enhancement in the inferior and lateral LV walls suggesting fibrosis. (h) Short-axis double inversion recovery image shows p.
T2-weighted signal in the lateral and anterior LV walls compatible with edema. (i) Short-axis ECV image processed with Qmap softw.
increased ECV in the inferior wall of 33.6%. Findings were compatible with acute myocarditis. This patient suffered morbidity fro
therapy side effects and had died within 1 month following this MRI evaluation. Significantly decreased LVEF can be a late findi

cardjotoxicity with o_ncologic therapies. , , o
Magnetic Resonance Imaging, VoTume: 50, Issue: 5, Pages: 1349-1366, First published: 26 August 2019, DOI: (10.1002/jmri.26895)



MRI in cardio-oncology: A review of cardiac complications in oncologic care

An 81-year-old male with abnormal LV myocardial deformation related to interventricular septum metastasis from small bowel
carcinoid tumor. (a) Diastolic and (b) systolic tagged images show the selective RF pulse-induced grid pattern which sticks with
the myocardium during the cardiac cycle. Normal myocardial deformation during systole is seen in the anterolateral and
inferior walls. Abnormal decreased contractility is noted by grid boxes which do not deform during systole (arrows). These
short-axis images are located basal to the interventricular metastasis. (c) Axial bSSFP image shows a hyperintense mass in the
interventricular septum with focal myocardial thickening (arrow). (d) Axial T2-weighted SPAIR image shows high T2-weighted
signal within the mass (arrow). In this case, the abnormal contractility is related to a nearby ventricular metastasis. However,
abnormal myocardial strain is more commonly seen with myocarditis and cardiomyopathies. Quantification of the abnormal
deformation of the tagged grid represents the basis for the earliest myocardial strain measurements.

Magnetic Resonance Imaging, Volume: 50, Issue: 5, Pages: 1349-1366, First published: 26 August 2019, DOI: (10.1002/jmri.26895)
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From: Clinical comparison of sub-mm high-resolution non-contrast coronary CMR angiography against coronary CT angiography in patients with low-

intermediate risk of coronary artery disease: a single center trial

RCA LAD D1 LCx 3D Volume Rendered
i

CMRA

Curved multiplanar reformat and 3D volume rendered non-contrast coronary CMRA and contrast enhanced coronary CTA in a 54 year old male with no
significant stenosis. D1-First diagonal coronary artery



From: Clinical comparison of sub-mm high-resolution non-contrast coronary CMR angiography against coronary CT angiography in patients with low-

intermediate risk of coronarv arterv disease: a single center trial
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Distribution of image quality scores for coronary CTA vs. coronary CMRA. a The overall 3D whole-heart dataset, b RCA, ¢ LAD and d LCx




Table 2 Diagnostic performance of 3D whole-heart coronary CMRA
compared with coronary CTA

From: Clinical comparison of sub-mm high-resolution non-contrast coronary CMR angiography against coronary CT angiography in patients with low-

intermediate risk of coronary artery disease: a single center trial

Sensitivity Specificity PPV NPV Accuracy
Per Patient 100 (12/12) [76-100] 74 (28/38) [58-85] 55 (12/22) [35-73] 100 (28/28) [88-100] 80 (40/50) [67-89]
Per Vesse| 81 (13/16e) [57-93] &8 (115/130) [82-93] 46 (13/28) [30-64] 97 (115/118) [93-99] 88 (128/1486) [81-92]
RCA 60 (3/5) [23-93] 91 (41/45) [79-96] 43 (3/7) [Ne-75] 95 (41/43) [85-99] 88 (44/50) [Ve-94]
LAD 88 (7/8) [53-99] 86 (36/42) [72-93] 54 (7/13) [29-77] 97 (36/37) [86-100] 86 (43/50) [74-93]
LCx 100 (3/3) [44-100] 91 (39/43) [78-96] 43 (3/7) [16-75] 100 (39/39) [91-100] 91 (42/46) [80-97]
LM N/A (0/0) 98 (49/50) [90-100] 0 (0/1) [0-85] 100 (49/49) [93-100] 98 (49/50) [90-100]
Per Segment 76 (16/21) [55-88] 95 (378/398) [92-97] 44 (16/36) [30-60] 99 (378/383) [97-99] 94 (394/419) [91-96]
Proximal 70 (7/10) [40-89] 95 (173/182) [91-97] 44 (7/18) [23-67] 93 (173/176) [95-99] 94 (180/192) [89-96]
Middle 100 (&/6) [61-100] 92 (B2/89) [85-96] 46 (6/13) [23-71] 100 (82/82) [95-100] 93 (88/95) [B6-96]
Distal 60 (3/5) [253-93] 97 (123/127) [92-99] 43 (3/7) [16-75] 93 (123/125) [94-100] 95 (126/132) [90-98]

Significant values are indicated in bold
% (raw data) [95% confidence interval]
RCA, Right coronary artery; LAD, Left anterior descdending coronary artery; LCx, Left circumflex coronary artery; LM, Left main coronary artery; PPV,
Positive predictive value; NPV, Negative predictive value



Graphical Abstract

4D flow CMR
Clinical and Investigational Clinical Applications

Based on conventional flow velocity parameters Based on novel hemodynamic parameters

Atrial flow characteristics in AF patients Clinical index in LV systolic/diastolic dysfunction patients

Visual evaluation of 3D flow patterns in LA Decreased LV KE over the whole cardiac cycle after Mi

Quantification of global mean/peak flowvelocity in LA Reduced LV KE at end-diastole in heart failure patients with mild
Quantification of stasis fraction in LA (based on pre LV remodelling

determined cut-offvalues) Increased LV TKE at late diastole in DCM patients

Classification of LV filling

Valvular disease Strong relation between LV KE during E/A waves

and increasing age
Retrospectivedirect quantification of e Eag

valvular regurgitation for all cardiac valives
with correct through plane placements
Application of retrospective valvular Increased TKE in ascending aorta in patients with
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transvalvular flow quantification Significant relation between LA TKE and

Retropective peak velocity quantification regurgitant volume in patients with mitral
of stenotic jets (particularly for eccentric ! regurgitation
and multiple jets) )

Management of valvular disease

Management of post-valvular intervention

Impaired recovery of flow energy profiles after
Congenital heart diseas mitral valve intervention for mitral valve
Insufficiency

Easy planning of a single 3D volume acquisition

Reltrospedlveanalvsrs at any location in 3D acquisition Index for quantification of LV dyssynchrony
volume

Internal control of balance between Qp and Qs (data quality Altered intra-cardiac pressure maps and hemodynamic forces in
check and rule in/out of shunts) patients with left ventricular dyssynchrony

Advanced visual evaluation of 3D flow patternsinthe
vicinity of surgically changed heart structures Clinical index in congenital heart diseases

Increased LV EL during diastole in corrected AVSD patients
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Figure | 3D blood flow visualization with 4D flow CMR. 3D blood flow visualization on the whole heart is shown during mid-systole in a 28-year-
old healthy male (top) and a 52-year-old female patient with tricuspid regurgitation (white arrow) after ventricular septal defect repair. Vectors,
streamlines, and pathlines are illustrated from left to the right. Ao, aorta; MPA, main pulmonary artery; RA, right atrium; SVC, superior vena cava.




3D and 3-directional flow data

Velocity overlay on ROI

vity (em/s)

Visualization Quantification

Figure 2 Overview of 4D flow CMR acquisition and analysis process. A typical workflow for 4D flow CMR data acquisition and analysis is demon-
strated using images of a healthy volunteer (33-year-old male). On the left side, the acquisition of images in 3-direction (x, y, z) in a 3-dimensional vol-
ume of interest is displayed through flow velocity and magnitude images. Thereafter, acquired images are reconstructed and sequence-specific errors
are corrected either manually or automatically. The segmentation is performed to determine the region of interest for visualization and quantification.
In the middle-right, velocity overlay on the left ventricle and atrium during early diastole was illustrated. On the right side, conventional and novel
hemodynamic parameters which can be generated through 4D flow CMR data are displayed. ROJ, region of interest.
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Figure 7 Valvular flow quantification with 4D flow CMR and 4D colour Doppler echocardiography. On the left side, valvular flow visualization and
quantification of 4D flow CMR is displayed in a 12-year-old healthy male. 3D blood flow on multi-planar views during systole for aortic valve and dur-
ing diastole for mitral valve is visualized. The segmentations were done using an artificial intelligence approach. Furthermore, aortic and mitral valve
flows are temporally plotted over the cardiac cycle and valvular flow measurements are provided. On the right side, measurement of 3D vena con-
tracta area of functional mitral regurgitation with 4D colour Doppler transesophageal echocardiography in a 51-year-old male is shown. Volume ren-
dering view (top left), two perpendicular long-axis views of mitral regurgitation jet and one short-axis view (bottom right) at the level of coaptation
defect are visualized. Vena contracta area was measured as 0.6 cm? and circumference of the jet as 3.3 cm.



Conclusion

Imaging is complimentary

>

» Software and hardware advancements have accelerated tremendously
» Al continues to advance make patient care better and more efficient
>

The future is looking bright in cardiovascular imaging
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