Hypertrophic CMP

What's next

Hypertrophic cardiomyopathy

- Genetically determined heart muscle disease often (60 to 70 percent) caused by mutations in one of several sarcomere genes.
- Prevalence of HCM in the general population been estimated to be closer to 1 out of every adults (0.5 percent) or perhaps even greater
- CLINICAL MANIFESTATIONS (symptoms/FH/Something abnormal)
- Echocardiography (unexplained increased LV thickness ≥15 mm /A wall thickness of ≥13 mm + FH)
- C MRI

CENTRAL ILLUSTRATION: Histopathological Findings in Hypertrophic Cardiomyopathy

Cui, H. et al. J Am Coll Cardiol. 2021;77(17):2159-70.

--3.0 ---4.0 ---5.0

--6.0 ---7.0

Gene Symbol	Protein Name	Detection Rate
SARCOMERE GE	55-70%	
MYH7	β-cardiac myosin heavy chain	
MYBPC3	Cardiac myosin-binding protein c	
TNNT2	Cardiac troponin T	
TNNI3	Cardiac troponin I	
TPM1	α-Tropomyosin	
ACTC	Cardiac actin	
MYL2 Cardiac myosin regulatory light chain		
MYL3	MYL3 Cardiac myosin essential light chain	
METABOLISM G	Unknown	
PRKAG2	PRKAG2 5-AMP-activated protein kinase, gamma-2 subunit	
LAMP2	Lysosomal associated membrane protein 2	

Guidelines for Clinical Screening with Physical Examination, Echocardiography and Electrocardiogram (ECG or EKG)*

Age	Recommendation						
<12	Optional unless:						
years	 Family history of early HCM-related death, early development of LV hypertrophy, or other adverse complications Competitive athlete in intense training program Onset of symptoms Other clinical suspicion of early LV hypertrophy 						
12-18 years	Repeat evaluation every 12-18 months						
>18-21 years	 Repeat evaluation approximately every 5 years, or in response to symptoms. Tailor evaluation if there is a family pattern of late-onset LV hypertrophy or HCM-related complications 						

PAST!

Power Stroke

What's next

RATS to HUMANS

ТО	T1	T2	
Basic Science	Translation to Human	Translation to Patients	
February 2016: Green, et al. "A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice."	June 2019: Grillo, et al. "In vitro and in vivo pharmacokinetic characterization of Mavacamten, a first-in-class small molecule allosteric modulator of beta cardiac myosin."	February 2020: A Phase 2 Open- label Pilot Study Evaluating MYK- 461 in Subjects With Symptomatic Hypertrophic Cardiomyopathy and Left Ventricular Outflow Tract Obstruction (PIONEER-HCM)	

EXPLORER-HCM

Inclusion Criteria

 $LVEF \ge 55\%$

Able to perform CPET

Secondary

HCMSQ-SoB

-2.8 vs -0.9

(p < 0.0001)

(charge from beseling

Risk Evaluation and Mitigation Strategy (REMS) Program*

Before prescribing, healthcare providers must be certified and enrolled in the CAMZYOS REMS Program.

*Certified healthcare providers may designate a member of their staff who is a licensed medical professional to be a Designee. The Designee can perform REMS activities in the CAMZYOS REMS. Certified healthcare providers are responsible for all information entered and activities performed in the CAMZYOS REMS by the Designee.

Initial and subsequent prescriptions for CAMZYOS must be written by the certified healthcare provider.

Echocardiograms are required

MAVA-LTE Study, EXPLORER-LTE Cohort

CENTRAL ILLUSTRATION: Longer-Term Treatment of Symptomatic Obstructive Hypertrophic Cardiomyopathy With Mavacamten Shows Sustained Improvements and Is Well Tolerated

Future!

REDWOOD-HCM: Cohorts 1 & 2

REDWOOD Patients with symptomatic oHCM on background therapy excluding disopyramide

SEQUOIA-HCM: Phase 3 Trial

Completed enrollment; expect topline results by end of year

Primary endpoint: Change in pVO, by **CPET** from baseline to Week 24

Secondary objectives include measuring change in KCCQ & improvement in NYHA class at week 12 and 24

Enrolled 282 patients treated with standard of care with:

- resting LVOT-G ≥30 mmHg,
- post-Valsalva LVOT-G ≥50 mmHg,
- NYHA Class II or III,
- exercise performance <80% predicted

Individualized dose up-titration based on echocardiography: LVEF ≥55%, post-Valsalva LVOT-G ≥30 mmHg

Patients with oHCM treated with SOC with		lization					Aficamt	<i>en</i> + SoC			Study
peak LVOT-G ≥50 mmHg & NYHA class II/III	Scree	[]	Placebo + SoC						End of		
Study Visits	creen	D1	W2	W4	W6	W8	W12	W16	W20	W24	W28
Echocardiogram			**	**	**	•*					
CPET	A									A	
KCCQ											
NYHA											
Echocardiogram											

Dose Option	is (Dose optimiz		
5 mg QD	10 mg QD	15 mg QD	20 mg QD

Sodium-glucose co-transporter (SGLT) 2 inhibitors

SONATA-HCM

SONATA Phase 3 study has commenced with pragmatic design designed to enable a broad indication for HCM

FDA Feedback Supports Potential Broad Label in HCM Based on Single Phase 3 Study

Primary endpoint: Change from baseline in KCCQ Clinical Summary Scale (CSS) score

VANISH Trial

Baseline participant characteristics of the VANISH trial			
		Placebo (n=90)	Valsartan (n=88)
Mean age in years (SD)		23.5 (10.1)	23.1 (10.1)
Female		35 (39%)	34 (39%)
White		88 (98%)	85 (97%)
	MYH7	36 (40%)	25 (28%)
	МҮВРС3	44 (49%)	47 (53%)
Sarcomeric gene	TNNT2	3 (3%)	5 (6%)
	TNNI3	2 (2%)	3 (3%)
	Other	5 (6%)	8 (9%)
Mean BMI		25.6	25.0
	Class I	84 (93%)	80 (91%)
NYHA	Class II	6 (7%)	8 (9%)
Mean maximum LV wall	thickness	16.4 mm	17.9 mm
Mean LV ejection fraction	n	66.3%	66.1%
Median total circulating TGF-β (IQR)*		4150 pg/mL (2550-5638)	3734 pg/mL (3153-6458)
Median free circulating	TGF-β (IQR) [^]	2.7 pg/mL (1.3-9.0)	2.9 pg/mL (1.6-8.5)

More than Pills!

Alcohol Septal Ablation

What's Next / VALOR-HCM

To assess if Mavacamten is safe and efficacious in reducing the need for SRT when added to maximally tolerated medical therapy among patients with obstructive hypertrophic cardiomyopathy

2-week screening phase ^{1,2}				
 Select inclusion criteria^{1,2} Age ≥18 years Diagnosis of obstructive HCM NYHA class II with exertional syncope or near syncope or NYHA class III–IV LVEF ≥60% Guideline eligible for SRT, referred within 12 months, and actively considering the procedure* LVOT peak gradient ≥50 mmHg at rest or with provocation 	 Select exclusion criteria³ Known infiltrative or storage disorder that mimics obstructive HCM⁺ Planned invasive procedure during the first 32 weeks of the study Any dose adjustment of background medication for obstructive HCM <14 days prior to screening or an anticipated change in regimen during the first 16 weeks of the study Previously treated with invasive SRT or cardiotoxic agents 			
CAMZYOS Randomized	d 1:1 (N=112) ¹ — Placebo (n=56)			
16-week treatment phase ¹⁻³				
CAMZYOS and placebo were administered orally, once a day. Dosage was monitored and adjusted (as needed) at weeks 8 and 12 to optimize patient response (decrease in LVOT gradient with Valsalva maneuver) and maintain LVEF ≥50%				

VALOR-HCM

- Primary Outcome: Composite decision to proceed with SRT or considered guideline eligible for SRT.
- Secondary Outcomes: Change in postexercise LVOT gradient, NYHA Class, KCCQ-23 CSS, NT-proBNP, and cardiac troponin.
- 46% were on beta blockers, 15% were taking calcium channel blockers, and 32% were on combination therapy.
- 20% of patients were taking disopyramide.
- Baseline mean LV ejection fraction (LVEF) was 76%.
- Peak resting LVOT gradient was 49 mmHg and mean post-exercise LVOT gradient was 84 mmHg.

What's Next

SESAME

What's Next- Beyond Pills! Gene therapy

Several strategies are being investigated in the realm of gene therapy for HCM

- **Gene replacement:** This involves introducing functional copies of the affected gene or a related gene to compensate for the defective or mutated gene's role in causing HCM. Myosin binding protein C 3 (MYBPC3) mutation.
- Gene editing: Techniques such as CRISPR-Cas9 have shown promise in correcting specific genetic mutations associated with HCM, by precise targeting and modification of the problematic genes within cardiac cells.
- Gene silencing: RNA interference (RNAi) is a method used to silence or reduce the expression of specific genes
- Signaling pathway modulation: This approach involves modifying signaling pathways or biological processes that play a crucial role in the pathogenesis of the disease.

End-stage phase of hypertrophic cardiomyopathy

Warning Signs!

- EF falls below 50%
- Increasing diuretic requirements
- Intolerance of their Negative inotropic agents.
- Frequent Arrythmias.
- Frequent ER visits.

Other Helpful tools – CPET/RHC/Serial MRI/Hepatic –Renal profiles

Cardiac transplant /Bridge to transplant.

- ISLT Listing Criteria. Different from DCMP.
- Dilated Morphology
- Restrictive Anatomical Limitations.

The MAVERICK-HCM Study

REDWOOD-HCM Trial, Cohort 4

Efficacy and Safety of *Aficamten* in Symptomatic Non-Obstructive Hypertrophic Cardiomyopathy: Results from the REDWOOD-HCM trial, Cohort 4

TRIAL DESIGN

41 patients with symptomatic (NYHA class II–III) non-obstructive HCM (LVOT-G <30 mm Hg; LVEF ≥60%; NT-proBNP >300 pg/mL)

Individualized dosing of aficamten (5–15 mg once daily) based on site-read LVEF ≥55%

weeks

10 weeks of treatment + 2-week washout

KEY RESULTS

- Clinically relevant improvements in NYHA class, KCCQ-CSS and biomarkers at Week 10 (panels A-C)
- - Modest reduction in LVEF (panel D)

 Most parameters returned to baseline during the 2-week washout, demonstrating reversibility of pharmacodynamic effects

The efficacy and safety of *aficamten* were demonstrated during 10 weeks of treatment

Non-Obstructive HCM

Large Phase 3's & Promising Preclinical Asset

Myosin Inhibitors

2x Phase 3 Trials in nHCM (approved in oHCM)

Mavacamten

- Phase 3 (ODYSSEY-HCM)
- Started in Dec 2022
- N=420
- Primary Endpoint: KCCQ-CSS at week 48, change from baseline in pVO₂
- Projected data readout 2025

Aficamten

- Phase 3 (ACACIA-HCM)
- Started in Sep 2023
- N=420
- Primary Endpoint: KCCQ-CSS from baseline to week 36

New Comers!

• Ion channel Blockers (Ranolazine /Eleclazine) Restyle HCM , Liberty HCM.

. Cardiac Mitotrope , Ninerafaxtat (IMPROVE-HCM)

. (SGLT) 2 inhibitors – SONATA-HCM

Exercise in Genetic heart disease

- LIVE-HCM
- Return-to-Play with Genetic Heart Disease

- Vigorous exercise may be safe in individuals with hypertrophic cardiomyopathy (HCM) who are evaluated and appropriately risk stratified by an expert.
- Return to play among athletes with genetic heart disease (HCM, long QT syndrome, dilated cardiomyopathy) is possible in a subset of athletes <u>who have been evaluated by</u> <u>an expert and for whom a risk assessment and emergency</u> <u>action plan have been established with all stakeholders</u>

Diagnosis of HCM Anticipated to Grow 5x the Rate of the General Population

